
A block recursion method with complex wave vectors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys.: Condens. Matter 5 L465

(http://iopscience.iop.org/0953-8984/5/39/002)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 11/05/2010 at 01:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/39
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys.: Condens. Matter 5 (1993) L465-L468. Printed in the UK 

LETTER TO THE EDITOR 

A block recursion method with complex wave vectors 
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4 D e p m e n t  of Physics, Nagoya University. Nagoya 464-01, Japan 

Received 19 July 1993 

Abstract. A new block rrcursion method using complex wave vectors is developed to calculate 
the s-p and p d  elements of the inter-site Green functions. A numerical example shows 
satisfactory results compared with those obtained in conventional band calculations. 

It is well known that the recursion method is a powerful tool in calculating the electronic 
structures of metals, compounds, etc, especially those of complex materials. The recursion 
method originally developed by Haydock et al (1975) has been extended to the form of the 
block tridiagonalization of the Hamiltonian (Jones and Lewis 1984, Inoue and Ohta 1987, 
Paxton 1988, Godin and Haydock 1991). The block recursion method has been proved 
to have the advantage that it preserves the rotational invxiability of the Green function 
expressed in a continued fraction (Inoue and Ohta 1987, referred to as 10 hereafter). For 
example, the inter-site Green function Gij is expressed by a matrix, the size of which is 
determined by the number of orbitals on atomic sites, and which is rotationally invariant even 
if the level of the continued fraction is low. The block-recursion method for the tight-binding 
d-band model was applied, e.g., to simulate the local stress distributions in transition-metal 
alloys (Ohta 1989) and to calculate the non-local susceptibilities of intermetallic compounds 
fioue 1992). 

The inter-site Green function in the tight-binding d-band model is calculated by using 
the following formula: 

(1) 

where z = E + is, H is the Hamiltonian and li) and l j )  are basis vectors at sites i and 
j ,  respectively. Here, the basis vectors are block vectors of size m (number of orbitals on 
the atomic sites) and Gjj etc are m x m matrices. It has been pointed out by Io, however, 
that (1) is useless to calculate the s-p and p-d elements of Gij; in other words, these 
matrix elements are identically zero since Hr = -HJ” for s-p and p-d elements. (Note 
that H;” = HT as H is a real Hermitian matrix.) In this letter, we present a method to 
calculate the s-p and p 4  elements of the inter-site Green functions in the block-recursion 
method and show a numerical example. 

1 .  - 1  Gij = {il(z - HI- I J )  - ~(Gi+j,i+j - Gi-j,i-j) 

We first define complex starting vectors: 

I*) = (li) f il j ) ) / f i .  

Gij = (G+,+ - G-,-)/Zi 

(2) 

Because G+,+ - G-,- = i(Gij - Gj;) = 2iGi, for s-p and p 4  elements, we have 

(3) 
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for these matrix elements. All matrix elements apart from the s-p and p-d elements 
identically vanish in this expression. The recurrence relation is the same as that given 
before by IO, 

W.+IB; = HW, - W,A, - W,B,-i (4) 

except that the block vectors w, are complex. Here + denotes adjoint and A. and 8, 
are block-recursion coefficients. It is clear that A,, is Hermitian. Because B,B$ is given 
by an inner product of the right-hand side of (4) and hence is Hermitian, B,B: can be 
transformed to a positive definite matrix by a unitary transformation. Then we can also 
make B. a Hermitian matrix. This procedure is the same as that used previously by IO. 
Thus, all of the makix elements of the inter-site Green functions can be calculated by using 
both (1) and (3). 

As for the termination of the continued fraction, we simply approximate A, =awl and 
B, = b,l, where I is the unit matrix and a, and b,  are real constants independent of the 
orbitals. Although there may be several ways to determine the values of a, and b, from 
the calculated data of A, and E,,, here we simply use the same values of a, and b, as 
determined in the calculation of the on-site Green function because this choice of a, and 
6,  preserves consistency for the band edges. When the symmetry of the system is low, 
the simple approximation to A, and E, above may produce the undesirable results that 
the s-s, s-d, p-p, and d-d elements of G;j do not vanish completely. Because these matrix 
elements of the Green function expanded in terms of moments vanish correctly, we can 
attribute these undesirable results to the approximate procedure of the termination of the 
continued fraction. The magnitude of the non-vanishing elements, however, can be small 
enough when the level of the continued fraction is sufficiently large. 

As a numerical example, we calculate non-local susceptibilities of paramagnetic 
transition metals using the tight-binding model including s, p, and d orbitals. The non- 
local susceptibility xjj is given by (Terakura et al 1982, Inoue 1992) 

E* 
x;j = (2&n) 1 ImTrGijGji dE  (5 )  

where p~g is the Bohr magneton and TI is taken over the orbitals. The hopping parameters 
are taken from data calculated by Papaconstantopoulos (1986) for FCC Ni. The parameters 
up to the second-nearest neighbours a n  included. The overlap integrals are neglected. An 
FCC cluster of 4000 atoms is prepared and A, and B, are calculated up to n = 7. In 
these calculations, the Green functions obtained by using the approximate termination of 
the continued fractions give the desired properties. 

The total density of states calculated is shown in figure l(u). The number of recursion 
coefficients calculated is not sufficient to produce fine structures of the density of states. 
The qualitative feature, however, is properly reproduced. The calculated results for xij are 
shown in figure l(b) as functions of the Fermi energy EF fori = (0, 0.0) and j = (1, 1,0), 
(2,0,0), and (2,2,0), which are denoted by XOI, X O Z .  and x03, respectively. The result of X O I  
is consistent with that calculated for Ni metal (Terakura ef a/ 1982) in the conventional 
band calculation. xo2 and xor show an oscillatory change with E F ,  which is qualitatively 
the same as those calculated by Terakura eta! (1982). A better agreement for X O ~  and ~ 0 3  
may be obtained by including a larger number of recursion coefficients. 

In  conclusion, we have presented a method to calculate the s-p and p-d elements of 
the inter-site Green functions, introducing a block-recursion method with complex wave 

-, 
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Figure 1. Calculated results for (a)  the density of states (full and integrated density of 
shks (broken curve) and (b)  the non-local susceptibilities ,y;j/2& for i - j = (1, 1 ,O) :  ,yo! 
(full C U N ~ ) ,  (2 .0 .0 ) :  ,yo? (broken curve), and (2.2,O): ,yo) (dotted curve). 

vectors. The numerical example has shown its usefulness. This method will be a powerful 
tool for studying the electronic structum, electron transfer, etc, in complex materials, e.g., 
polymers, where s and p orbitals play important roles. In these cases, the overlap integrals 
must be properly taken into account. Such generalization is in progress. 

The computer programs used by the authors are based on the Cambridge Recursion Library 
developed by Dr C M M Nex to whom the authors express their thanks. 
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